Effective Pedestrian Detection Using Center-symmetric Local Binary/Trinary Patterns
نویسندگان
چکیده
Accurately detecting pedestrians in images plays a critically important role in many computer vision applications. Extraction of effective features is the key to this task. Promising features should be discriminative, robust to various variations and easy to compute. In this work, we present novel features, termed dense center-symmetric local binary patterns (CS-LBP) and pyramid center-symmetric local binary/ternary patterns (CS-LBP/LTP), for pedestrian detection. The standard LBP proposed by Ojala et al. [1] mainly captures the texture information. The proposed CS-LBP feature, in contrast, captures the gradient information and some texture information. Moreover, the proposed dense CS-LBP and the pyramid CS-LBP/LTP are easy to implement and computationally efficient, which is desirable for real-time applications. Experiments on the INRIA pedestrian dataset show that the dense CS-LBP feature with linear supporct vector machines (SVMs) is comparable with the histograms of oriented gradients (HOG) feature with linear SVMs, and the pyramid CS-LBP/LTP features outperform both HOG features with linear SVMs and the start-of-the-art pyramid HOG (PHOG) feature with the histogram intersection kernel SVMs. We also demonstrate that the combination of our pyramid CS-LBP feature and the PHOG feature could significantly improve the detection performance—producing state-of-the-art accuracy on the INRIA pedestrian dataset.
منابع مشابه
Pyramid Center-Symmetric Local Binary/Trinary Patterns for Effective Pedestrian Detection
Detecting pedestrians in images and videos plays a critically important role in many computer vision applications. Extraction of effective features is the key to this task. Promising features should be discriminative, robust to various variations and easy to compute. In this work, we presents a novel feature, termed pyramid center-symmetric local binary/ternary patterns (pyramid CS-LBP/LTP), fo...
متن کاملPyramid Center - symmetric Local 1 Binary / Trinary Patterns for Pedestrian 2 Detection
Detecting pedestrians in images plays a very important role 6 in many computer vision applications such as video surveillance, smart 7 cars and robotics. Feature extraction is the key for this task. Promis8 ing features should be discriminative, robust and easy to compute. This 9 paper presents a novel and efficient feature, termed pyramid center10 symmetric local binary\ternary patterns (pyram...
متن کاملImage authentication using LBP-based perceptual image hashing
Feature extraction is a main step in all perceptual image hashing schemes in which robust features will led to better results in perceptual robustness. Simplicity, discriminative power, computational efficiency and robustness to illumination changes are counted as distinguished properties of Local Binary Pattern features. In this paper, we investigate the use of local binary patterns for percep...
متن کاملEfficient Pedestrian Detection at Nighttime Using a Thermal Camera
Most of the commercial nighttime pedestrian detection (PD) methods reported previously utilized the histogram of oriented gradient (HOG) or the local binary pattern (LBP) as the feature and the support vector machine (SVM) as the classifier using thermal camera images. In this paper, we propose a new feature called the thermal-position-intensity-histogram of oriented gradient (TPIHOG or T π HOG...
متن کاملFeature Extraction for Human Detection using HOG and CS-LBP methods
Feature plays a very important role in the area of image processing. Before extracting features, image pre-processing technique like resizing is applied on the input image. Then, features are obtained by various feature extraction techniques. These features are then used for classification and recognition of the objects in an image. Features are useful in terms of space utilization, efficiency ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1009.0892 شماره
صفحات -
تاریخ انتشار 2010